Horticultural and Chemical Practices Influencing Fruit Quality with Reliance and Swenson Red Table Grape Cultivars

By
Jill Crozier
Grad Student
Dept. of Horticulture
Iowa State University

'Swenson Red'
This project is funded, in part, by:

• Leopold Center for Sustainable Agriculture

• Iowa Fruit and Vegetable Growers Association

(through the Specialty Crops Program of the Iowa Department of Agriculture and Land Stewardship)
Proposed Research Focus

• Evaluate cluster removal, berry thinning, and GA application effects on:
 • Fruit yield and size
 • Cluster appearance
 • Fruit quality
Cultivar Background

‘Swenson Red’

Developed by Elmer Swenson in cooperation with the University of Minnesota.

• Ripens early and is hardy to –30°F.
• Used for fresh eating, juice and wine production.
• Large red berries, thicker skinned.
‘Reliance’

Released by the University of Arkansas in 1982.

• Very hardy seedless table grapes.
• Red fruit are very thin skinned and achieve high sugar levels.
• Flavor and eating quality are excellent.
Horticultural Practices

- 30 + 10 balanced pruning system used
- Spray schedule according to Extension recommendations (Pm 1375)
- Shoots positioned in July to open up canopy
Cluster Thinning (Removal)

Adjusts crop size by removing clusters and keeping primary clusters
Tail Thinning (Berry thinning)

• Tail thinning alters the shape of the cluster

• Clusters which are naturally long will be more compact when tail thinned

• These clusters are more attractive due compactness and fuller berries
Chemical Treatment - GA

- Seeded grapes (‘Swenson Red’) produce GA
- Seedless grapes ‘Reliance’ benefit from applying GA
Harvest - ‘Swenson Red’

- Control
- Cluster thin
- No cluster thin & 1/3 tail thin
- Cluster thin & 50% tail thin
Harvest - ‘Reliance’

Control

Cluster thin & tail thin

No cluster thin & tail thin

Tail thin & GA
Results - Swenson Red

<table>
<thead>
<tr>
<th>TRT</th>
<th># Cluster / Vine</th>
<th>Yield / Vine (kg)</th>
<th>Berry Wt. (g)</th>
<th>Berry Diameter (mm)</th>
<th>Total Soluble Solids (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster thin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No tail thin</td>
<td>62.4 bc</td>
<td>13.68 ab</td>
<td>3.71 a</td>
<td>17.9 ab</td>
<td>20.08 a</td>
</tr>
<tr>
<td>1/3 tail thin</td>
<td>54 c</td>
<td>10.5 b</td>
<td>3.72 a</td>
<td>17.76 ab</td>
<td>19.78 a</td>
</tr>
<tr>
<td>1/2 tail thin</td>
<td>57.2 bc</td>
<td>10.2 b</td>
<td>3.85 a</td>
<td>18.32 a</td>
<td>19.84 a</td>
</tr>
<tr>
<td>No Cluster thin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No tail thin</td>
<td>91.2 ab</td>
<td>16.86 ab</td>
<td>3.26 b</td>
<td>17.22 b</td>
<td>18.22 b</td>
</tr>
<tr>
<td>1/3 tail thin</td>
<td>100.6 a</td>
<td>20 ab</td>
<td>3.82 a</td>
<td>18.13 a</td>
<td>19.66 a</td>
</tr>
<tr>
<td>1/2 tail thin</td>
<td>103.6 a</td>
<td>17.88 a</td>
<td>3.55 ab</td>
<td>17.8 ab</td>
<td>19.48 a</td>
</tr>
</tbody>
</table>
Results – ‘Reliance’

<table>
<thead>
<tr>
<th>Treatment</th>
<th># Cluster / Vine</th>
<th>Yield / Vine (kg)</th>
<th>Berry Wt. (g)</th>
<th>Berry Diameter (mm)</th>
<th>Total Soluble Solids (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Thin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tail thin</td>
<td>GA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>36.00 cd</td>
<td>2.80 c</td>
<td>2.30 a</td>
<td>14.90 ab</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>42.50 bcd</td>
<td>3.93 bc</td>
<td>1.95 ab</td>
<td>14.41 ab</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>33.50 d</td>
<td>0.70 c</td>
<td>2.13 ab</td>
<td>14.69 ab</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>29.50 d</td>
<td>0.47 c</td>
<td>1.32 b</td>
<td>12.86 b</td>
</tr>
<tr>
<td>No Cluster Thin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>56.00 abc</td>
<td>5.58 abc</td>
<td>2.65 a</td>
<td>15.70 a</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>68.50 a</td>
<td>11.45 a</td>
<td>2.70 a</td>
<td>15.62 a</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>68.67 a</td>
<td>9.68 ab</td>
<td>2.23 a</td>
<td>13.71 a</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>57.50 ab</td>
<td>5.07 abc</td>
<td>2.31 a</td>
<td>14.92 a</td>
</tr>
</tbody>
</table>
Conclusions

‘Swenson Red’

• Yields were similar between treatments.

• Smallest berries were from control vines (no cluster thinning or tail thinning).

• Largest berries from cluster thinned and tail thinned vines.
Conclusions

‘Reliance’

• Need to repeat in 2003 for better estimates of yield.

• GA applications enhanced maturity date and berry weight.