Distance From Sources of Herbicide Drift

• Several commonly used agricultural herbicides (notably 2,4-D and dicamba) are prone to vapor drift when the solid (salt) phase of the chemical is converted to a gaseous phase.
 – Drift (particle or vapor) onto grape vines may result in stunted primary shoot growth in vines of all ages, and direct yield loss in bearing vines.

• The most effective method of minimizing herbicide drift injury to vineyards is to select sites located the furthest possible distance away from nearby drift sources, and preferably up-wind of those sources.
Other Site Considerations

• Access to an irrigation source
 – Rapid development in first and second year vines requires adequate soil moisture, necessitating up to 1” rainfall per week (3-5 gallons/vine).

• Geometric regularity and plot shape
 – Both are determinants of row length, which influences installation costs and long-term operating efficiency.
Keys to Success

1. Carefully and honestly analyze site liabilities and assets.
 – Be willing to select an alternate site if necessary!

2. Test soil carefully before committing the site to vines.
 – Amend/correct as necessary, or select an alternate site

Photo courtesy N.R.C.S.
Cultivar Selection

Photos courtesy Bruce Reisch, Cornell University
Cultivar Selection

- **Market demand**
 - Fruit must be saleable!

- **Cold hardiness**
 - Zone 4a: -20°F
 - Zone 5b: -15°F
 - Play it safe!

- **Season length requirements**
 - Zone 4a: early, and some mid-season cultivars
 - Zone 5b: early, mid-, and some late-season cultivars (?)

Photo courtesy Bruce Reisch, Cornell University
Cultivar Selection, Cont’d

• **Disease resistance**
 – Higher resistance reduces the need for fungicide applications.

• **Cultivar ↔ soil pairing**
 – It is generally desirable to have an inverse relationship between site capacity and cultivar vigor.
 – Individual cultivars exhibit soil preferences.

• **Cultivar-specific management concerns**
 – Will aggressive cluster thinning be necessary?
 – Will aggressive shoot thinning be necessary?
 – Will very high vigor require divided trellising?
 – Will the harvest period overlap that of other cultivars in the vineyard?
Cultivar Attributes List

Grape Cultivars for Consideration in Iowa

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Characteristics</th>
<th>Disease Tolerance</th>
<th>Sensitivity</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aurora</td>
<td>FAH W W E V T N 4</td>
<td>3 2 3 3 1 3 2 3</td>
<td>N 2</td>
<td>Disease prone. Wine quality is fair; suitable for blending with American hybrids.</td>
</tr>
<tr>
<td>Baco Noir (Baco #1)</td>
<td>FAH B W M VV ST N 4</td>
<td>3 1 2 1 1 2 3 2</td>
<td>N ?</td>
<td>Std: onslow with severe high alkaline tolerance; potential for blending.</td>
</tr>
<tr>
<td>Bath</td>
<td>A B T J M V T M 5</td>
<td>3 2 3 3 1 3 2 3</td>
<td>N 2</td>
<td>Beta</td>
</tr>
<tr>
<td>Beta</td>
<td>AH B J E V T N 6</td>
<td>1 1 1 1 1 1 1 1</td>
<td>? ? ? ? ? ? ?</td>
<td>Produce small, acidic berries; not suited for wine making.</td>
</tr>
<tr>
<td>Bluebell</td>
<td>AH B T J WM M V T N 6</td>
<td>2 3 2 3 3 1 3 2</td>
<td>1 1 2 1 1 2 2 2</td>
<td>? ?</td>
</tr>
<tr>
<td>Buffalo</td>
<td>A B T J WM M V T N 6</td>
<td>3 2 3 3 1 3 2 3</td>
<td>N 2</td>
<td>Early season concord type with plump, thin, loose clusters.</td>
</tr>
<tr>
<td>Canadice</td>
<td>FAH R ST E V T M* 4</td>
<td>3 1 1 2 1 2 2 2</td>
<td>N ?</td>
<td>Medium-sized clusters; dark berries; climatic.</td>
</tr>
<tr>
<td>Cascade</td>
<td>FAH B W E V M 4</td>
<td>1 1 1 2 1 2 2 2 1</td>
<td>N ?</td>
<td>Cascade</td>
</tr>
<tr>
<td>Cayuga White</td>
<td>FAH W W M V ST M 4</td>
<td>1 2 1 1 1 1 1 1 1</td>
<td>N 1</td>
<td>Can be made into a variety of wines: types; when fully ripened develops a banana taste.</td>
</tr>
<tr>
<td>Catawba</td>
<td>A R J WM MV T Y 5</td>
<td>3 1 1 1 1 1 1 1 1</td>
<td>N 2</td>
<td>Catawba</td>
</tr>
<tr>
<td>Chambourcin</td>
<td>FAH B W L MV SU Y 3</td>
<td>1 2 1 1 2 2 2 2 2</td>
<td>2 2</td>
<td>Chambourcin</td>
</tr>
<tr>
<td>Chancellor</td>
<td>FAH B W L MV ST Y 4</td>
<td>1 3 3 3 1 3 1 3 3</td>
<td>Y 3</td>
<td>Chancellor</td>
</tr>
<tr>
<td>Chardonel</td>
<td>FAH B W L V SU Y 4</td>
<td>1 1 1 1 1 1 1 1 1</td>
<td>N 1</td>
<td>Chardonel</td>
</tr>
<tr>
<td>Cheilos</td>
<td>FAH B W L V U N 4</td>
<td>1 1 1 1 1 1 1 1 1</td>
<td>? 3</td>
<td>Cheilos</td>
</tr>
</tbody>
</table>

Type: A = American; AH = American hybrid; FAH = French American hybrid.
Color: B = Blue / black; R = Red / rose; W = White.
Use: W = Wine; T = Table; ST = Seedless table; J = Juice.
HS (harvest season): E = early; M = mid-season; L = late season.
GH (growth habit): T = trailing; ST = semi-trailing; SU = semi-upright; U = upright.
CT (cluster thinning): N = not required; M = maybe required; Y = required; *= at bloom to improve berry size.
WH (water hardness, injury beginning at): 3 = Cold tender (< 3 F), 4 = Moderately hardy (> 3 F), 5 = Hardy (< 5 F), 6 = Very Hardy (> 5 F).

An invaluable resource for Iowa growers!
Keys to Success

• Select cultivars that are desired by your market.
 – Consult with buyers!

• Select cultivars that will mature fruit and wood in your region.

• Carefully consider individual cultivar assets and liabilities.

Photos courtesy Bruce Reisch, Cornell University
Inputs – The Three M’s

- **Money**
- **Materials**
- **Management**
 - Time!
Money

- Capital investment in materials (not including land charges) = $3,500 - $5,000 or more per acre
 - Permanent irrigation requires an additional $1,200 - $1,500 per acre. Divided trellising systems, and tiling, if necessary, increase costs as well.
- Labor costs from pre-plant through year three total $3,000 - $4,000 per acre
- Total capital investment per acre = $6,500 - $9,000 (dry farmed, not including land charges)
- With average full yield of 3.5+ ton/A anticipated in year 4 or 5, the capital recovery period is approximately 7 to 9 years.
Materials

- Planting stock
- Trellising supplies
- Hand tools
- Equipment
Planting Stock

• 1 yr. #1 or 1 yr. “X” dormant transplant are typically preferred.
 • Highly preferable that vines have no less than 16” of root growth, and similar shoot growth.
 • Deny shipment if stock is not of specified quality.

• Greenhouse vines can be used successfully, but are less forgiving of management errors.

• Striking cuttings is possible, but commonly results in a lower success rate.
Trellising

• Posts
 – High quality pine, C.C.A. treated to A.W.P.A. Standard C16 specifications; or native decay-resistant species
 • 3-4” or 4-5” dia. X 8-9’ line posts set no further than 28’ apart with a 2-3’ insertion depth
 • 5-6” dia. end posts, buried 3-4’ and set in an appropriate end-post assembly (braced or anchored; row length and trellis system dependent)
 – High quality steel vineyard posts
 • Set no further than 28’ feet apart
 • Galvanized if fertigating with nitrogen
 – “T” posts
 • No less than 1.33 lb./ft.; install at each vine
Trellising

• **Anchors** (if using tie-back assembly)
 – Many options: “dead man,” anchors, driven posts, etc.
 • Screw-in anchors: 40” length, 5/8” dia. shaft, 5” fully welded helix are minimum specifications

• **Wire**
 – High-tensile wire is greatly preferred.
 • Class 3 galvanized
 • 190,000 p.s.i. or greater
 • 12.5 ga. for cordon wires; 14 ga. acceptable for foliage or training wires

• **Terminal hardware:** tensioners, crimping sleeves, staples, etc.
 – Seek highest quality

• **Training stakes or twine**
Hand Tools

- Shovel, hand hoe, spade, rigid rake
- Hammers, pliers, HT wire cutters, crimping tool for sleeves, electric or gas drill
- HT wire dispensing unit
- Pruning shears (bypass style), vine tying tool and/or hand-tying materials
- Line trimmer? (bad sign!)
- If installing permanent irrigation: soil moisture monitoring equipment
Machinery

• For a 3 to 8 acre planting:
 – Own:
 • 35+ h.p. tractor – should be no wider than grass aisle width
 • Air-assisted or high-pressure hydraulic canopy sprayer
 • 3 pt. or belly-mounted mower
 • Weed control implement; many options:
 - Herbicide sprayer
 - Mulcher/bale shredder
 - Tillage tool
 - Flamer
 • 3 pt. mounted fertilizer spreader or trailer-type compost spreader
 • Pick-up truck (& trailer?)
 • Landscape rake, or similar implement for pruning debris removal
Machinery

• For a 3 - 8 acre planting:
 – Rent/Hire:
 • Heavy equipment for pre-plant site preparation ops.
 • Auger or tree planter for vine installation
 • Post driver or auger for trellis installation
 • Narrow disk or rotovator for pre-plant vine row tillage

Above: air-assisted sprayer – a valuable tool
Pre-Plant Management

• Proper site layout
 – Vine X row spacing selection
 • 7’ X 9’, 8’ X 10’ most common
 • Vine spacing determined by cultivar vigor, site capacity, and trellis selection
 • Row spacing determined primarily by tractor width and trellis selection
 – Head-land allowance
 • 30’ minimum; 35-40’ if using larger equipment (esp. trailer-type sprayers or harvesters)
 – Access aisle allowance
 • Need determined by row length
Pre-Plant Management, Cont’d

• Proper site preparation
 – Soil analysis: depth, percolation, nutrient concentrations
 – Perennial weed removal
 – Tree/rock/root removal
 – Removal of nearby pest host species (wild vines, etc.)
 – Land leveling?
 – Subsoiling?
 – Tiling?
 – Application and incorporation of needed soil amendments
 – Irrigation head-line installation?
 – Cover crop establishment
 – Predator exclusion fence installation?
First Year Management

• Correct planting technique and conditions
 – 7-10 days prior to frost-free date if planting dormant vines; after danger of frost has passed if planting green-growing vines
 – Proper soil conditions
 – Proper vine planting depth; root pruning?
 – Proper transplant methods

• Irrigation
 – Irrigate each vine with 5 gallons of water as soon after planting as possible.
 – Maintain weekly moisture receipts equivalent to 1” rain per acre (3-5 gallons per vine), or maintain soil moisture at approximately 70% of capacity, through mid-August.
First Year Management, Cont’d

• Pruning
 – Retain two, 3-bud spurs after adjusting vine height. It is preferable that both originate from below ground.

• Fertilization
 – Apply 45 lbs./A nitrogen broadcast, or 30 lbs./A side-dressed after soil has settled around vines.
 – Annual tissue analysis should begin in the second season of growth to facilitate proper fertility management in future years.

• Grow tubes
 – Helpful if utilizing herbicides for weed control; practically necessary if planting green-growing vines or striking cuttings
First Year Management, Cont’d

• Thinning
 – Retain the two best shoots at 3-4” shoot growth if using grow tubes; retain 3 or 4 shoots if training without grow tubes.
 – Remove all flower clusters, or retain 1 cluster per vine to identify “error vines” (wrong cultivar).

• Predator exclusion: deer, rabbits, etc.
 – Install fencing if predator populations are high; apply/install repellants if populations are low.

• Weed control
 – Number one cause of failure in young vineyards!
First Year Management, Cont’d

• Trellising
 – Facilitates proper and efficient training if installed in the first season
 – Must be:
 • Properly sized
 • Properly designed
 • Properly installed

• Training
 – Retain two separate trunks originating from below ground whenever possible.
 – Distribute foliage over the largest possible area of the trellis to maximize exposed leaf area; don’t train more than two shoots immediately adjacent to one another.
First Year Management, Cont’d

• Insect Management
 – Understand the principles of Integrated Pest Management, and employ them.
 – Many potential predators in young vineyards; most common in IA:
 • Grasshopper
 • Japanese Beetle
 • Eight-Spotted Forester
 • Eastern Grape or Potato Leafhopper
 – Scout no less frequently than every third day.
 – Be prepared to employ control tactics quickly.
First Year Management, Cont’d

• Disease management
 – Maintenance of a large, healthy leaf canopy is paramount to rapid vine development.
 – Prevention of leaf and shoot infection is essential.
 • Primary offenders in young plantings:
 – Powdery Mildew
 – Downy Mildew
 – Anthracnose (sporadic)
 – Applications of preventative fungicides are an important component of a successful disease management program.
Keys to Success

- Have adequate finances to properly care for the vineyard.
- Select appropriate, high quality materials for the vineyard which will offer long service life and good performance.
- Manage and maintain the vineyard in a timely and diligent fashion.

Photo courtesy Mike White, I.S.U. Extension
Resources for Industry Newcomers

• People:
 – Dr. Paul Domoto; I.S.U. Professor of Horticulture and Extension Fruit Specialist
 • domoto@iastate.edu or (515) 294-0035
 – Dr. Gail Nonnecke; I.S.U. Professor of Horticulture
 • nonnecke@iastate.edu or (515) 294-0037
 – Mike White; I.S.U. Extension Field Crop and Viticulture Specialist
 • mlwhite@iastate.edu or (515) 961-6237
 – Eli Bergmeier, Viticulture Technician, Golden Hills RC&D
 • eli.bergmeier@goldenhillsrcd.org or (712) 482-3029

• Internet:
 – ISU Viticulture: http://viticulture.hort.iastate.edu
Thank You!