Vineyard Management for Improved Fruit and Wine Quality

Bruce Bordelon
Purdue University
Wine Grape Team

Presented at the
2008 Iowa Wine Growers Association Annual Conference
February 9, 2008
Iowa Fruit and Vegetable Growers Meeting, Feb 22, 2001, Cedar Rapids

Purdue University is an Equal Opportunity/Equal Access institution.
Vineyard Management Principles

- Variety/site suitability
- Proper crop balance
- Appropriate harvest decisions
- Appropriate training system
Matching Variety to Site

- Cold hardiness-winter temperature
 - Zone 4b (-20 to -25F)
 - Zone 5a (-15 to -20F)

- Date of ripening-temperature during ripening period
 - Early (<80 days from bloom to harvest)
 - Late (>120 days from bloom to harvest)
Match Cold Hardiness to Climate

- **Very hardy (-20 to -30°F)**
 - Frontenac, LaCrescent, Marquette, DeChaunac, LaCrosse, Edelweiss, St. Croix, St. Pepin, Esprit
- **Hardy (-15 to -25°F)**
 - Concord, Steuben, Foch, Noiret, Corot noir, Vignoles, Chancellor, Norton, Melody
- **Moderately hardy (-10 to -20°F)**
 - Seyval, Chardonel, Cayuga white, Traminette
- **Slightly hardy (-5 to -15°F)**
 - Chambourcin, Vidal
- **Tender (0°F to -10°F)**
 - All vinifera
Cold damage
Match Ripening Date to Climate

• **Heat units** (growing degree days base 50°F)
 – Iowa varies between 3,500 and 2,500
 – Cultivars vary season of ripening, need for heat

• **Frost Free Days**
 – In Iowa season length varies from 140 to 170+ days
 – Mid to late ripening varieties need 160-180 days
 – Early varieties need less
Theories on Heat Affects

- California Zones I-V based on GDDs base 50°F (Amerine & Winkler, 1944)
- Temps >86°F day & >64°F night are detrimental to fruit quality
 Optimal temperature is 68-77°F day, 59-68°F night (Coombe, 1987)
- Mean temp of 64-70°F during final month of ripening (Gladstones, 1992)
- Daily heat load (>22°C) during last 28 days (Happ, 2004)
- Quality ripening days (daily heat accumulation base 50 <22°F)
 veraison to harvest (Butler, 2004)
Match Variety to Ripening Season Temperatures

Fruit quality is best when ripened under **warm days** and **cool nights**

- Don’t grow early ripening grapes in a long season, hot area (excess heat)
 - Low sugars, low acid, high pH, poor color, poor flavor & aroma
- Don’t grow late ripening grapes in a short season, cool area (insufficient heat)
 - Low sugar, high acid, low pH, unripe herbaceous flavors
Relative Date of Ripening

<table>
<thead>
<tr>
<th>Early</th>
<th>Foch, Marquette, St. Croix, Edelweiss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid</td>
<td>Frontenac, LaCrescent, Seyval, LaCrosse, Chardonel, Cayuga White, Vignoles, DeChaunac, Traminette, Noiret, Corot noir, etc.</td>
</tr>
<tr>
<td>Late</td>
<td>Chambourcin, Norton, Vidal</td>
</tr>
</tbody>
</table>
ISU Grape Cultivar Trials
Planting Sites

North
-20° to -25°

ISU Northeast R & D Farm

Central

ISU Horticulture Res. Station

ISU Armstrong R & D Farm
-15° to -20°

ISU Southeast R & D Farm

South
-10° to -15°
Harvest Dates & Maturity

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Hort Res. Sta.</th>
<th>Armstrong Farm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Date</td>
<td>SS</td>
</tr>
<tr>
<td>Edelweiss</td>
<td>Aug 16</td>
<td>14.0</td>
</tr>
<tr>
<td>Marechal Foch</td>
<td>Aug 24</td>
<td>19.0</td>
</tr>
<tr>
<td>St. Croix</td>
<td>Aug 30</td>
<td>17.5</td>
</tr>
<tr>
<td>Seyval Blanc</td>
<td>Aug 30</td>
<td>19.5</td>
</tr>
<tr>
<td>Frontenac</td>
<td>Sep 19</td>
<td>22.4</td>
</tr>
<tr>
<td>Traminette</td>
<td>Sep 13</td>
<td>18.4</td>
</tr>
<tr>
<td>La Crosse</td>
<td>Sep 13</td>
<td>17.8</td>
</tr>
<tr>
<td>Vignole</td>
<td>Sep 19</td>
<td>22.4</td>
</tr>
<tr>
<td>Chambourcin</td>
<td>Oct 4</td>
<td>22.0</td>
</tr>
<tr>
<td>Cynthiana</td>
<td>Oct 13</td>
<td>22.5</td>
</tr>
</tbody>
</table>
Iowa Ripening Season Temperatures

<table>
<thead>
<tr>
<th>Location</th>
<th>August</th>
<th>September</th>
<th>October</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max</td>
<td>Min</td>
<td>Mean</td>
</tr>
<tr>
<td>Burlington (1st FF Nov 1)</td>
<td>84</td>
<td>64</td>
<td>74</td>
</tr>
<tr>
<td>Des Moines (1st FF Oct 30)</td>
<td>84</td>
<td>64</td>
<td>74</td>
</tr>
<tr>
<td>Sioux City (1st FF Oct 18)</td>
<td>84</td>
<td>62</td>
<td>73</td>
</tr>
</tbody>
</table>

Gladstones suggested 64-70°F
Appropriate Varieties for Iowa?

Varieties cold hardy enough for region
• All the early to mid season varieties should ripen well.
• Late varieties might not ripen fully in some years.
Rainfall During Ripening

Rainfall between veraison and harvest almost always leads to a reduction in fruit quality

- Occurrence of bunch/fruit rots
 Vignoles, Seyval, etc are very prone to bunch rots
 LaCrescent, Frontenac, etc are more tolerant
- Dilution of sugar, acid, flavors

Harvest decisions are often influenced by rainfall and resulting rots
Iowa Ripening Season Precipitation

<table>
<thead>
<tr>
<th>Location</th>
<th>August Mean inches</th>
<th>September Mean inches</th>
<th>October Mean inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burlington</td>
<td>3.16</td>
<td>2.70</td>
<td>2.09</td>
</tr>
<tr>
<td>(Total 27.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Des Moines</td>
<td>4.07</td>
<td>3.07</td>
<td>2.35</td>
</tr>
<tr>
<td>(Total 32.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sioux City</td>
<td>3.10</td>
<td>2.65</td>
<td>1.75</td>
</tr>
<tr>
<td>(Total 25.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appropriate Harvest Decisions

- Sugar, acid and pH?
- Flavor, aroma?
- Skin and seed maturity?

- Problem with MN varieties and high acidity.
 - As we wait for TA to drop, flavors are lost, fruit shrivels…
- Problem with NY varieties: low sugar and acid
 - What guidelines will be used to harvest these?

- Berry Sensory Workshop July-August 2008
Achieving Balance

- The ultimate goal in grape growing is finding the proper balance between vegetative vigor and fruit production.
 - Achieving proper balance leads to reduced variability and improved quality….Sustainability.
 - Produce maximum yields of highest quality fruit possible
- Balance depends on site (climate, soils), variety & rootstock (if applicable), viticultural practices, etc.
- Pruning and crop load adjustment are the basic tools for achieving balance.
Characteristics of Balanced Vines

- Cane pruning weights of 0.2 to 0.4 lb per ft of trellis
- Crop load ratio (yield:pruning wt) of 5-10 (vinifera) or 8-12? (American/hybrids)
- 4-5 shoots per ft of trellis
- Shoot length 4-6 feet (untrimmed)
- Internode length 4 - 6 inches
- Minimal lateral shoots
- 1.5 - 2 leaf layers max
Achieving Balance though Pruning

• Pruning is the annual removal of wood from the previous season.
• Pruning is the primary method of adjusting crop size (yield) to balance vines.
• Basics:
 – Each bud (node) retained produces one shoot
 – Each shoot produces 1-3 clusters
 – Each shoot produces leaves with capacity to ripen fruit
How much to prune? ~90% of 1-year-old wood (canes) pruned each year
Balanced Pruning

- Research based method developed by Nelson Shaulis to quantify pruning severity.
- Uses a measurement - the weight of canes (previous season’s growth) to estimate a vine’s capacity to ripen a crop.
- Pruning weight (aka vine size) is applied to a formula to determine the appropriate number of buds to retain.
- Pruning formulas are based on the growth and fruiting characteristics of a variety.
Balanced Pruning

• Vine capacity often varies greatly between adjoining vineyard blocks, and even vines within a row.

• Balanced pruning should help avoid:
 – under pruning (over cropping) small vines.
 – over pruning (under cropping) large vines.
 – variability in fruit quality.

• Balancing pruning is the first step in achieving the annual desired fruit quality, and with maintaining or improving the vine’s capacity for the following season.
 – Maximum yields without sacrificing vine size
Balanced Pruning Formulas

<table>
<thead>
<tr>
<th>Grape Variety</th>
<th>Pruning Formula</th>
<th>Cluster Thinning</th>
</tr>
</thead>
<tbody>
<tr>
<td>American</td>
<td>30+10</td>
<td>No</td>
</tr>
<tr>
<td>French Hybrids</td>
<td>20+10, 15+10, 5+10</td>
<td>Yes, usually</td>
</tr>
<tr>
<td>New Hybrids</td>
<td>20+20, 20+10?</td>
<td>Yes / No?</td>
</tr>
<tr>
<td>Seedless Table</td>
<td>30+10</td>
<td>Yes</td>
</tr>
<tr>
<td>Vinifera</td>
<td>20+20</td>
<td>Yes / No?</td>
</tr>
</tbody>
</table>
Example of Balanced Pruning

- Pruning Formula: $30 + 10$
 - Leave 30 nodes (“count buds”) for first pound of canes removed plus 10 for each additional pound

- Pruning wt = 1 lb – leave 30 nodes
- Pruning wt = 2 lb – leave 40 nodes
- Pruning wt = 2.5 lb – leave 45 nodes
- Pruning wt = 3 lb – leave 50 nodes
Balanced Pruning Reality

- Unfortunately, achieving balance through pruning alone is usually not possible.
- Balanced pruning only works well on American-type varieties.
- Hybrids tend to be more fruitful:
 - More clusters per shoot
 - Very large clusters
 - More shoots per “count” node
- Hybrids require more careful management to maintain “vine balance.”
One shoot per bud
Non-count shoots
Non-count shoots
Non-count shoots
Problem with balanced pruning formulas:
- On small vines they tend to suggest a very low number of shoots, which would produce far below the optimum leaf area for the vine. (e.g. 5+10 for Seyval)

Another approach to balancing vines
- Instead of applying a formula to determine number of buds, why not leave enough shoots to fill the trellis space then use a formula to adjust the number of clusters to meet a targeted “crop load” value?
- That will help maximize “vine capacity” (leaf area) without causing vine imbalance.
Using Target Crop Load Approach

1. Prune and thin to 40-50 shoots per vine (at 8 ft vine spacing)
2. Use long-term average cluster weight data to calculate number of clusters needed for yield that will give a desired “crop load ratio” based on “vine size” data.
3. Thin clusters to appropriate number

Required data:
- Vine size (pruning weight)
- Vine yield (crop weight)
- Cluster weight (number of clusters per vine)
Variety Performance over 12 years
Southwest Purdue Ag Center

<table>
<thead>
<tr>
<th>Variety</th>
<th>Yield (lb)</th>
<th>Vine Size (lb)</th>
<th>Crop Load ratio</th>
<th>Cluster wt (lb)</th>
<th>Clusters per vine</th>
<th>Clusters for crop load ratio = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chambourcin</td>
<td>19</td>
<td>1.1</td>
<td>17</td>
<td>0.41</td>
<td>47</td>
<td>24</td>
</tr>
<tr>
<td>Chardonel</td>
<td>17</td>
<td>1.0</td>
<td>17</td>
<td>0.39</td>
<td>44</td>
<td>26</td>
</tr>
<tr>
<td>Seyval</td>
<td>22</td>
<td>1.0</td>
<td>22</td>
<td>0.45</td>
<td>49</td>
<td>22</td>
</tr>
<tr>
<td>Norton</td>
<td>17</td>
<td>3.2</td>
<td>5</td>
<td>0.19</td>
<td>90</td>
<td>168</td>
</tr>
<tr>
<td>Foch</td>
<td>24</td>
<td>2.2</td>
<td>11</td>
<td>0.21</td>
<td>115</td>
<td>105</td>
</tr>
<tr>
<td>Frontenac</td>
<td>12</td>
<td>1.2</td>
<td>10</td>
<td>0.29</td>
<td>41</td>
<td>41</td>
</tr>
</tbody>
</table>

Purdue University is an Equal Opportunity/Equal Access institution.
Variety Performance over 12 years
Southwest Purdue Ag Center

<table>
<thead>
<tr>
<th>Variety</th>
<th>Yield (lb)</th>
<th>Vine Size (lb)</th>
<th>Crop load ratio</th>
<th>Cluster wt (lb)</th>
<th>Clusters per vine</th>
<th>Clusters for crop load ratio =10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chambourcin</td>
<td>19</td>
<td>1.1</td>
<td>17</td>
<td>0.41</td>
<td>47</td>
<td>24</td>
</tr>
<tr>
<td>Chardonel</td>
<td>17</td>
<td>1.0</td>
<td>17</td>
<td>0.39</td>
<td>44</td>
<td>26</td>
</tr>
<tr>
<td>Seyval</td>
<td>22</td>
<td>1.0</td>
<td>22</td>
<td>0.45</td>
<td>49</td>
<td>22</td>
</tr>
<tr>
<td>Norton</td>
<td>17</td>
<td>3.2</td>
<td>5</td>
<td>0.19</td>
<td>90</td>
<td>168</td>
</tr>
<tr>
<td>Foch</td>
<td>24</td>
<td>2.2</td>
<td>11</td>
<td>0.21</td>
<td>115</td>
<td>105</td>
</tr>
<tr>
<td>Frontenac</td>
<td>12</td>
<td>1.2</td>
<td>10</td>
<td>0.29</td>
<td>41</td>
<td>41</td>
</tr>
</tbody>
</table>
Variety Performance over 12 years
Southwest Purdue Ag Center

<table>
<thead>
<tr>
<th>Variety</th>
<th>Yield (lb)</th>
<th>Vine Size (lb)</th>
<th>Crop load ratio</th>
<th>Cluster wt (lb)</th>
<th>Clusters per vine</th>
<th>Clusters for crop load ratio =10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chambourcin</td>
<td>19</td>
<td>1.1</td>
<td>17</td>
<td>0.41</td>
<td>47</td>
<td>24</td>
</tr>
<tr>
<td>Chardonel</td>
<td>17</td>
<td>1.0</td>
<td>17</td>
<td>0.39</td>
<td>44</td>
<td>26</td>
</tr>
<tr>
<td>Seyval</td>
<td>22</td>
<td>1.0</td>
<td>22</td>
<td>0.45</td>
<td>49</td>
<td>22</td>
</tr>
<tr>
<td>Norton</td>
<td>17</td>
<td>3.2</td>
<td>5</td>
<td>0.19</td>
<td>90</td>
<td>168</td>
</tr>
<tr>
<td>Foch</td>
<td>24</td>
<td>2.2</td>
<td>11</td>
<td>0.21</td>
<td>115</td>
<td>105</td>
</tr>
<tr>
<td>Frontenac</td>
<td>12</td>
<td>1.2</td>
<td>10</td>
<td>0.29</td>
<td>41</td>
<td>41</td>
</tr>
</tbody>
</table>

Purdue University is an Equal Opportunity/Equal Access institution.
Variety Performance over 12 years
Southwest Purdue Ag Center

<table>
<thead>
<tr>
<th>Variety</th>
<th>Yield (lb)</th>
<th>Vine Size (lb)</th>
<th>Crop load ratio</th>
<th>Cluster wt (lb)</th>
<th>Clusters per vine</th>
<th>Clusters for crop load ratio =10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chambourcin</td>
<td>19</td>
<td>1.1</td>
<td>17</td>
<td>0.41</td>
<td>47</td>
<td>24</td>
</tr>
<tr>
<td>Chardonel</td>
<td>17</td>
<td>1.0</td>
<td>17</td>
<td>0.39</td>
<td>44</td>
<td>26</td>
</tr>
<tr>
<td>Seyval</td>
<td>22</td>
<td>1.0</td>
<td>22</td>
<td>0.45</td>
<td>49</td>
<td>22</td>
</tr>
<tr>
<td>Norton</td>
<td>17</td>
<td>3.2</td>
<td>5</td>
<td>0.19</td>
<td>90</td>
<td>168</td>
</tr>
<tr>
<td>Foch</td>
<td>24</td>
<td>2.2</td>
<td>11</td>
<td>0.21</td>
<td>115</td>
<td>105</td>
</tr>
<tr>
<td>Frontenac</td>
<td>12</td>
<td>1.2</td>
<td>10</td>
<td>0.29</td>
<td>41</td>
<td>41</td>
</tr>
</tbody>
</table>
 Variety performance over 6 yrs at Lafayette

<table>
<thead>
<tr>
<th>Variety</th>
<th>Yield (lb)</th>
<th>Vine Size (lb)</th>
<th>Crop load ratio</th>
<th>Cluster wt (lb)</th>
<th>Clusters per vine</th>
<th>Clusters for crop load ratio =10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cayuga White</td>
<td>24</td>
<td>1.0</td>
<td>24</td>
<td>.32</td>
<td>75</td>
<td>31</td>
</tr>
<tr>
<td>Corot Noir</td>
<td>18</td>
<td>1.2</td>
<td>16</td>
<td>.31</td>
<td>58</td>
<td>39</td>
</tr>
<tr>
<td>Frontenac</td>
<td>12</td>
<td>0.9</td>
<td>13</td>
<td>.17</td>
<td>71</td>
<td>53</td>
</tr>
<tr>
<td>LaCrescent</td>
<td>12</td>
<td>1.3</td>
<td>9</td>
<td>.18</td>
<td>67</td>
<td>72</td>
</tr>
<tr>
<td>Noiret</td>
<td>15</td>
<td>2.5</td>
<td>5</td>
<td>.31</td>
<td>48</td>
<td>80</td>
</tr>
<tr>
<td>Traminette</td>
<td>14</td>
<td>2.2</td>
<td>6</td>
<td>.22</td>
<td>64</td>
<td>100</td>
</tr>
</tbody>
</table>
Asynchronous Berry Development in Concord

Balanced
- 40 nodes/vine
- 6 tons/acre

Overcropped
- 160 nodes/vine
- 12 tons/acre

Source: D. Miller, MSU
Vine Balance Summary

- Pruning and crop load adjustment are the most important management practices for achieving vine balance and good fruit quality.

- Goals
 - Balance fruit production with vegetative growth
 Produce maximum yields of highest quality fruit possible without sacrificing vine capacity
 - Maintain consistent vine balance
 - Reduce fruit and vine variability

- Growers need to collect data on yield, pruning weight, cluster weight, shoots per vine, etc.
Choosing an Appropriate Training System

• Variety traits
 – Vigor
 – Growth habit
 – Cold hardiness
 – Disease susceptibility (esp. fruit rots)
 – Relative fruit quality

• Management concerns
 – Mechanical or hand harvesting/pruning
Training System Goals

• Position annual shoot growth for optimum exposure of fruit and leaves

• Promote balanced fruit and vegetative growth

• Position fruit for ease of pest management and harvest

• Facilitate pruning and vineyard management
Training Systems

- High Cordon - standard for hybrids in the Midwest

- Mid-Wire Cordon - with VSP facilitates leaf removal and improved cluster exposure to sunlight

- Divided canopy systems (GDC, Scott Henry, Smart Dyson, etc.) to manage high vigor varieties/sites (reduce shading, increase yields, etc.)
Matching the Training System to Growth Habit

<table>
<thead>
<tr>
<th>Types of grapes</th>
<th>Growth habit</th>
<th>Training System</th>
</tr>
</thead>
<tbody>
<tr>
<td>American</td>
<td>procumbent (downward)</td>
<td>High cordon or cane</td>
</tr>
<tr>
<td>French hybrid</td>
<td>mostly procumbent</td>
<td>High cordon</td>
</tr>
<tr>
<td></td>
<td>several upright</td>
<td>or mid-wire cordon with VSP</td>
</tr>
<tr>
<td>European (vinifera)</td>
<td>mostly upright</td>
<td>Mid or low wire</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cordon or cane with VSP</td>
</tr>
</tbody>
</table>
Upright Varieties

Vignoles
Chardonel
Cayuga White
Traminette
High Cordon Training
Downward shoot positioning is critical to reducing shading of the cordon.
Concerns with High Cordon: Shading
Mid-wire Cordon with VSP
Purdue University is an Equal Opportunity/Equal Access institution.
Concerns with Mid-Wire Cordon

• Upright growing shoots tend to be very vigorous (strong sink strength)

• Excessive vigor can result in low fruitfulness

• Hedging is necessary to prevent shading, but may result in excessive lateral growth, requiring additional trimming.

• On high vigor sites, vine size may be too high to leave appropriate shoots per foot of trellis and leaf layers.
Concerns with Scott Henry

- Upper and lower canopy differences

- Upright growing shoots tend to be very vigorous (strong sink strength)

- Excessive vigor can result in low fruitfulness

- Hedging is necessary to prevent shading, but may result in excessive lateral growth, requiring additional trimming.

- On high vigor sites, divided canopy helps maintain desired shoots per foot of trellis and leaf layers.
Fig. 12. The Smart-Dyson Ballerina training system. This is a Mid-Wire Cordon training system with a portion of its shoots positioned downward.
Training Summary

• Choose training system based on:
 – Growth habit
 – Vine vigor
 – Cold hardiness
 – Disease pressure

• Training system should provide well-spaced distribution of fruiting wood with good exposure to sunlight
Traminette Training System Study
Yield Components, Vine Size, Crop Load

5 year means

<table>
<thead>
<tr>
<th>Training System</th>
<th>Yield (kg/vine)</th>
<th>Pruning Wt (kg/vine)</th>
<th>Crop Load (yld/pw)</th>
<th>Cluster wt (g)</th>
<th>Berry wt (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High cordon</td>
<td>6.29 ab</td>
<td>0.83 b</td>
<td>8.1 a</td>
<td>102.4</td>
<td>1.77</td>
</tr>
<tr>
<td>Mid-wire cordon</td>
<td>5.82 b</td>
<td>1.06 a</td>
<td>6.0 b</td>
<td>95.3</td>
<td>1.77</td>
</tr>
<tr>
<td>Scott Henry</td>
<td>7.43 a</td>
<td>1.11 a</td>
<td>7.8 a</td>
<td>106.7</td>
<td>1.72</td>
</tr>
</tbody>
</table>

** ** **** **** ns ns
Point Quadrat Analysis

4 year means

<table>
<thead>
<tr>
<th>Training System</th>
<th>Shoots/vine</th>
<th>Gaps (%)</th>
<th>Leaf layers (%)</th>
<th>Interior leaves (%)</th>
<th>Exterior clusters (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High cordon</td>
<td>54.6 b</td>
<td>2.0 c</td>
<td>4.2 a</td>
<td>54.4 a</td>
<td>17.8 b</td>
</tr>
<tr>
<td>Mid-wire cordon</td>
<td>51.5 b</td>
<td>7.0 b</td>
<td>1.9 b</td>
<td>32.2 b</td>
<td>40.5 b</td>
</tr>
<tr>
<td>Scott Henry</td>
<td>79.8 a</td>
<td>11.0 a</td>
<td>1.7 b</td>
<td>28.8 b</td>
<td>38.4 a</td>
</tr>
</tbody>
</table>

Purdue University is an Equal Opportunity/Equal Access institution.
Fruit Composition

5 year means

<table>
<thead>
<tr>
<th>Training System</th>
<th>Soluble Solids (%)</th>
<th>Titratable Acidity (g/L)</th>
<th>pH</th>
<th>FVT</th>
<th>PVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>High cordon</td>
<td>22.2</td>
<td>7.2 a</td>
<td>3.14</td>
<td>0.85</td>
<td>5.29</td>
</tr>
<tr>
<td>Mid-wire cordon</td>
<td>22.5</td>
<td>6.8 b</td>
<td>3.16</td>
<td>0.73</td>
<td>5.71</td>
</tr>
<tr>
<td>Scott Henry</td>
<td>22.4</td>
<td>7.1 a</td>
<td>3.14</td>
<td>0.73</td>
<td>5.73</td>
</tr>
<tr>
<td>ns</td>
<td>ns*</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

Purdue University is an Equal Opportunity/Equal Access institution.
Sensory Analysis

- Can panelists detect a difference between wines from the training systems?
- 12 trained panelists
- 2002 and 2003 wines
- Triangle tests
 - Compusense software
Sensory Results

Panelists correctly detected a difference between HC and MWC.

100 % 2003; 87.5% 2002

Less likely for panelists to detect a difference between SH and MWC, or SH and HC for both years (50-60% accuracy).
Scott Henry Canopy Comparisons

<table>
<thead>
<tr>
<th>Training System</th>
<th>Shoots/cordon</th>
<th>Gaps (%)</th>
<th>Leaf layers</th>
<th>Interior leaves (%)</th>
<th>Exterior clusters (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High cordon</td>
<td>54.6</td>
<td>2.0</td>
<td>4.2</td>
<td>54.4</td>
<td>17.8</td>
</tr>
<tr>
<td>Mid-wire cordon</td>
<td>51.5</td>
<td>7.0</td>
<td>1.9</td>
<td>32.2</td>
<td>40.5</td>
</tr>
<tr>
<td>Scott Henry Upper</td>
<td>39.5</td>
<td>13.3 a</td>
<td>1.6 b</td>
<td>25.6</td>
<td>40.8</td>
</tr>
<tr>
<td>Scott Henry Lower</td>
<td>39.0</td>
<td>6.2 b</td>
<td>2.2 a</td>
<td>36.3</td>
<td>31.5</td>
</tr>
</tbody>
</table>

Purdue University is an Equal Opportunity/Equal Access institution.
Scott Henry Canopy Comparisons

<table>
<thead>
<tr>
<th>Training System</th>
<th>Yield (kg/vine)</th>
<th>Pruning Wt (kg/vine)</th>
<th>Cane Wt (g)</th>
<th>Crop Load (yld/pw)</th>
<th>Cluster Wt (g)</th>
<th>Berry Wt (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High cordon</td>
<td>6.29</td>
<td>0.83</td>
<td>15.2</td>
<td>8.1</td>
<td>102.4</td>
<td>1.77</td>
</tr>
<tr>
<td>Mid-wire cordon</td>
<td>5.82</td>
<td>1.06</td>
<td>20.6</td>
<td>6.0</td>
<td>95.3</td>
<td>1.77</td>
</tr>
<tr>
<td>Scott Henry Upper</td>
<td>4.31 a</td>
<td>0.75 a</td>
<td>19.0</td>
<td>5.7 b</td>
<td>115.0 a</td>
<td>1.76 a</td>
</tr>
<tr>
<td>Scott Henry Lower</td>
<td>3.12 b</td>
<td>0.37 b</td>
<td>9.5</td>
<td>8.4 a</td>
<td>94.9 b</td>
<td>1.34 b</td>
</tr>
</tbody>
</table>

Purdue University is an Equal Opportunity/Equal Access institution.
Summary

• Proper selection of variety to match site
 – Cold hardiness
 – Date of ripening

• Proper balance between yield and vegetative vigor
 – Crop load adjustment through pruning and thinning
 – Record keeping (data collection)

• Selecting an appropriate training system
 – Match growth habit of variety
 – Improve fruit/wine quality
Acknowledgements

• Patty Skinkis - Former graduate student, now Assistant Professor of Viticulture, Oregon State University
• Paul Howard - Research technician
• Christian Butzke, Jill Blume, Ellie Butz - enology and sensory assistance

Funding support:
• Viticulture Consortium - East
• Indiana Wine Grape Council
• Purdue Agriculture Research Centers