Making Wine with Northern Grapes

Anna Katharine Mansfield
UMN Enology Lab

Presented at the
Iowa Wine Growers Association Annual Meeting
January 28, 2006
Issues:

- High color
- Low tannins
- Hybrid character
- High/low soluble solids
- High titratable acidity
Basic Winemaking Philosophy:

Interfere as little as possible.

Source: wikipedia.com
Basic Winemaking Philosophy:

• Wine should reflect varietal
 – Trueness to type
• Practice good science:
 – Try one treatment at a time
 – Perform small-scale trials
Phenolic compounds

- Flavonoids
 - Anthocyanins
- Tannins
- Measurement?
Color

• Anthocyanins (Flavonoids)
 – Cyanidin, peonidin, delphinidin, petunidin, malvidin
 • Blue \rightarrow red (degree of methylation)
 – Mono- and di- glucosides
Color

• Red grapes with *V. riparia* ancestry
 – Colored pulp
 – Blue or purple tint to color
 • Anthocyanins
 – types, glucosides?
 – Aging
 • Little change
High Color

• Decrease skin contact
 – 3-5 days for reds; no skin contact for rosés
 – Tannin extraction

• Filtration
 – Tight depth filter (polishing filter)
 • Lightens color w/o changing hue
 – DE
High Color

• Fining
 – Activated carbon
 • Strips color
 • Flavor stripping and off-flavors
 – Gelatin
 • Removes larger polymeric pigments
 – Shifts hue → ruby
 • Lowers astringency
High Color

• Marketing
Low Color

- Blending
- Co-fermentation
Low Tannins

- Oak aging
 - Vanilllin, lactones
 - Barrels, staves, chips, etc.
- Tannin addition
 - Enological tannins
 - Add as early as possible
 - ‘stick out;’ disharmonious
Hybrid Character

• Herbaceousness, foxiness
 – Saint Croix, Sabrevois, Edelweiss, Frontenac (early)
• Proper viticultural practices
 – Harvest time
• Yeasts?
• Malolactic fermentation
Soluble Solids

• Issues:
 – *V. riparia* offspring: 23-29°Brix
 – White Swenson cultivars: 16-18°Brix

• Amelioration or Chapitalization
 – Pre- or post fermentation?

• Reserving juice

• Trials
 – Sensory evaluation
Soluble Solids and Acid

In general, perceived balance in wines can be expressed as:

Sweetness \leftrightarrow Acidity + Astringency + Bitterness

- Sugar and ethanol mute acids, increasing acid thresholds
- Phenols may enhance acidity, decreasing acid thresholds
Acids in Grapes

- Tartaric acid
 - 2-19 g/L in must (5-10 g/L *V. vinifera*)
 - 1/3 to ¼ of acid found in wine
 - Concentration cultivar dependent
 - Affected little by yeast, LAB
Acids in Grapes

- **Malic acid**
 - 1-8 g/L in must (2-4 g/L *V.vinifera*)
 - Concentrations dictated by cultivar and temperature
 - Fermentation reduces concentrations 20-30%
 - Completely consumed in malolactic fermentation
Wine Acids: Measurement

• Why measure both pH and TA?
• Musts and wines act as buffer solutions (musts >> wines)
• Thus, changes in acidity may not result in changes in pH
• Variability due to degree of maturity, cultivar, crop level, season, soil moisture and mineral composition
pH: Importance

• Affects chemical reactions, physical properties and microbial stability of juice and wines

• Can affect perception of ‘freshness,’ ‘greenness,’ or ‘thinness’ of wines

• Wine pH generally ranges from 2.8 – 4.0

• pH 3.7-3.9 may affect palate structure

• pH > 3.8 may encourage microbial growth
Titratable Acidity: Importance

• Considerable sensory impact
 – Saliva in mouth partially titrates acidity (bicarbonate ions)
 – Saliva flow increases in proportion to neutralization required

• Wine TA: 4-17 g/L
pH and Titratable Acidity

<table>
<thead>
<tr>
<th></th>
<th>High pH</th>
<th>High TA</th>
<th>High pH</th>
<th>Low TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>High pH</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Low pH</td>
<td></td>
<td></td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>Leave alone or deacidify</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deacidify, protect pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Leave alone or acidify
- Deacidify, protect pH
- Leave alone or deacidify
Acid in Cold-Climate Grapes

- Cultivars with *V. riparia* ancestry (tartaric)
- Climatic effects
 - Lower respiration rates (malic, tartaric to lesser extent)
- Viticultural practices
- Aging potential
- Aroma/flavor

Frontenac gris at the HRC.
Photo by Peter Hemstad
Methods of Deacidification

- **Biological**
 - Viticultural practices
 - Carbonic maceration
 - Yeast metabolism
 - Malolactic conversion

- **Mechanical**
 - Amelioration
 - Blending

- **Chemical**
 - Cold stabilization
 - Carbonate additions
Deacidification: Viticultural

- Proper trellising
- Leaf pulling
- Cluster thinning
Yeast consume some malic acid during fermentation.

Yeast selection:
- Acid-reducing yeasts
 - 71B, Lalvin AC
- Schizosaccharomyces pombe
 - ProMalic (*lallemand*)
 - Uses malic acid in fermentation
 - May over-deacidify
Deacidification: Carbonic Maceration

• Fermenting whole grapes under CO₂ or N₂ gas
• Pros:
 – Malic acid decreased by up to half during maceration
• Other effects:
 – Distinct sensory character
• Cons:
 – May require equipment purchase
 – Reduced tannin extraction
Malolactic Fermentation: Theory

• At equivalent levels of acidity, perceived acidity varies:

 Most acidic

 Malic
 Tartaric
 Lactic

 Least acidic
Deacidification: Malolactic Fermentation

• Pros:
 – Complete conversion of malic acid to lactic acid
 – Complete degradation of citric acid
 – TA reduction equaling approx. ½ malic contribution
 • Change: 1-3 g/L in TA; 0.1-0.3 in pH
 – Favorable sensory changes
 – Protects wine against further microbial degradation
Malolactic Fermentation

• Cons:
 – Time and labor
 – ML cultures fastidious
 – Stuck MLF can result in severe off-odors
 – Reaction with potassium sorbate produces geranium note
Deacidification: Amelioration

- Addition of water, sugar
- **Pros:**
 - Increases product yield
 - Dilutes intense aroma, flavor, color
- **Cons:**
 - Dilutes aroma, flavor, color
 - Perceived reduction in body
 - TA reduction is unpredictable
- **Legal Considerations (TTB):**
 - Final fixed acidity ≥ 5 g/L
 - Total allowable addition $\leq 35\%$ v/v
Deacidification: Blending

• Blending high acid and low acid wines
• Pros:
 – Easy
 – Fairly predictable
• Cons:
 – Biological and chemical stability may be affected
• Legal:
 – Label considerations
Deacidification: Cold Stabilization

- Precipitation of salts of tartaric acid
 - Potassium bitartrate
 - Calcium tartrate
- Soluble in water; less soluble in alcohol
- Solubility decreases in cool temperatures
- pH affects precipitation- max. at pH 3.7
Deacidification: Cold Stabilization

• Salt precipitation changes acid equilibrium:
 • pH < 3.65 = reductions in pH and TA
 – 1 proton generated for each molecule potassium bitartrate
 – pH reduction up to 0.2 units
 – TA decrease up to 2 g/L
 • pH > 3.65 = increase in pH; reduction in TA
 – 1 proton removed per tartrate anion precipitated
Deacidification: Cold Stabilization

- Precipitation of potassium bitartrate
 - 1 g/L reduction of TA for each 2.5 g/L formed
- Precipitation of calcium tartrate
 - Only occurs if calcium carbonate added
 - No reduction in TA
 - At pH 3.5-4, 0.2 reduction of pH possible
Deacidification: Carbonate Additions

- Neutralization by addition of potassium carbonate, calcium carbonate, or potassium bicarbonate
- Neutralizes tartaric acid
- Malic acid not affected
Deacidification: Carbonate Additions

• Pros:
 – Range of products- small to large corrections possible
 – Juice or wine corrections (based on product)
 – Relatively fast (K Bicarb)

• Cons:
 – Sensory effects
 – Different products needed for different levels of acidity
Cold Climate Grapes: Summary

• Is manipulation absolutely necessary?
• Test everything before making adjustments...then test again afterwards
• Proper viticultural practices essential
Winery Planning and Design Workshop & New Cold-Hardy Grape Cultivars

June 24-25, 2006
UM Landscape Arboretum

Registration opens 4 February 2006
Contact: UM Enology Lab

http://winegrapes.coafes.umn.edu
mansf007@umn.edu
952.443.1501